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Abstract 
Safety failures are an important factor in low drug development success rates. Human 

genetic evidence can select drug targets causal in disease and enrich for successful pro-

grams. Here, we sought to determine whether human genetic evidence can also enrich 

for labeled side effects (SEs) of approved drugs. We combined the SIDER database 

of SEs with human genetic evidence from genome-wide association studies, Mende-

lian disease, and somatic mutations. SEs were 2.0 times more likely to occur for drugs 

whose target possessed human genetic evidence for a trait similar to the SE. Enrichment 

was highest when the trait and SE were most similar to each other, and was robust to 

removing drugs where the approved indication was also similar to the SE. The enrich-

ment of genetic evidence was greatest for SEs that were more drug specific, affected 

more people, and were more severe. There was significant heterogeneity among disease 

areas the SEs mapped to, with the highest positive predictive value for cardiovascular 

SEs. This supports the integration of human genetic evidence early in the drug discovery 

process to identify potential SE risks to be monitored or mitigated in the course of drug 

development.

Author summary
Side effects are a major contributor to the high failure rates of clinical drug development. 
There are numerous anecdotes where a genetic association between a human gene and 
a trait mirrors the association between a drug targeting the protein product of that gene 
and a side effect similar to the trait. These anecdotes have generated interest in using 
human genetics to predict drug side effects, but to date there are very few systematic 
studies examining the predictive value in this approach. Here we combine human genetic 
datasets spanning common and rare diseases with a database of side effects that are noted 
on approved drug labels. We find that overall side effects are twice as likely to occur if 
they are similar to a trait where the drug target gene has a genetic association. This sug-
gests that human genetic evidence can be useful in identifying potential on-target safety 
liabilities.
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Introduction
Safety issues are a major contributor to drug candidate failure, with clinical safety findings 
accounting for 25% of drug program terminations in Phase I-II [1]. The causal evidence of 
human genetics between drug targets and phenotypic outcomes can provide insights into 
potential on-target safety liabilities of drug candidates before development has even begun 
[2]. There are many anecdotes of adverse events predicted by genetics because they are sim-
ilar to traits genetically associated with a drug target [2]. Conversely, there are also examples 
of drug tolerability being supported by the lack of negative consequences of genetic loss of 
function in the drug target gene in humans [3]. Inspired by these anecdotes, phenome-wide 
association studies [4], curation of loss-of-function variants [5], and recall-by-genotype 
of rare homozygous loss-of-function participants [6] have been used to evaluate potential 
on-target liabilities.

Given the strong evidence that genetic evidence supporting the connection between target 
and indication for a drug increases the probability of clinical success, presumably by pre-
dicting on-target pharmacology, it is to be expected that genetic evidence will also predict 
undesired on-target pharmacology, namely, side effects (SEs). Nevertheless, to date, there is 
limited systematic support for the predictive value of genetic evidence for SEs. One reason is 
that SEs can be caused by on or off target biology. On-target SEs occur as a result of engag-
ing the intended drug target. Off-target SEs occur as the result of unspecific drug protein 
binding, impacting biological pathways unrelated to the intended therapeutic target. Still 
other SEs are simply adverse events that get reported and may become enshrined in drug 
labels despite not being causally related to the drug at all: some may be coincidental, or may 
be associated with the indication for which the drug is being prescribed in the first place. 
The study of how to use genetics to anticipate potential SEs thus suffers from dilution of 
on-target liabilities by off-target and non-associated SEs. It has been shown that drugs with 
SEs are more likely to bind off-target proteins associated with Mendelian diseases similar to 
the SE [7], but this approach does not assess potential on-target effects at the time of target 
selection early in the drug discovery process. One systematic study of clinical trial SEs has 
shown a 1.80-fold enrichment for SEs affecting the organ system in which the drug target 
has genetically associated traits [8], which dropped to 1.55-fold when drugs with pharmaco-
logic action in that same organ system were removed. To date, no study has systematically 
examined the enrichment of SEs for genetic associations at a finer grain of SE-trait similarity. 
Moreover, no study has examined the positive predictive value of human genetic evidence 
for SE prediction.

Recently, in re-assessing the utility of human genetics for predicting drug approval [9], 
we mapped human genetic evidence and drug indications to the Medical Subject Head-
ings (MeSH) ontology and constructed a similarity matrix among MeSH terms using 
Lin-Resnik similarity, which is based on both term co-occurrence and position in the 
ontological hierarchy [10,11]. This approach permitted us to examine the enrichment of 
successful drug target-indication pairs for genetically associated gene-trait pairs where the 
target is the same and the indication and trait are similar. Here, we adapt this approach to 
SEs, joining reported drug-SE pairs to genetically supported gene-trait pairs, and estimat-
ing the enrichment above background among the set of all drug-SE pairs. We demonstrate 
that SEs reported in approved drug labels are enriched for genetic evidence. By assigning 
quantitative similarity scores, we are able to test the sensitivity of such enrichment to the 
similarity threshold, to the source of genetic evidence, and to potential confounders. Finally, 
we estimate the positive predictive value of human genetic evidence, and examine the how 
SE frequency, specificity, and severity impact the value of genetically-informed predictions 
across different types of SEs.
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Results
Given the paucity of systematic data about statistically enriched SEs observed in clinical 
trials, we chose to focus on SEs captured in approved drug labels and package inserts in Side 
Effect Resource (SIDER) [12,13], to which we joined a database of human genetic evidence 
[14]. This resulted in 2,094 unique SEs (MeSH terms), and 567 unique drugs with at least 
one human target, one SE and one approved indication, or 1,187,298 possible drug-SE pairs 
(Tables A-D in S1 Table). Of these possible pairs, SEs were observed (reported in the drug 
label) for 64,481, yielding an overall base rate (marginal probability of an SE being observed 
for a given drug) of 5.4%. Throughout, our analysis will use the universe of possible drug-SE 
pairs, and we will use the term “observed” to refer to those drug-SE pairs where the SE occurs 
in the drug label.

The primary analysis of interest is the relationship between drug-SE pairs and the pres-
ence of genetic evidence between the gene encoding the drug target and a trait similar to the 
SE. For instance, variants in SCN5A are associated with cardiac arrhythmia, and topiramate, 
which is indicated for migraine, targets SCN5A and has cardiac arrhythmia listed as a SE. 
When we defined genetic evidence as SEs and traits with ≥0.9 similarity, we found genetic evi-
dence to be strongly enriched among observed SEs (OR = 2.3, 95% CI = 2.2-2.5, P = 7.1e-93, 
Fisher’s exact test).

We explored several possible confounders that could affect this observed enrichment (S1 
Fig and Table E in S1 Table). One such confounder would be if SEs similar to genetically stud-
ied traits occur more often. We therefore restricted our analysis to drug-SE pairs where the SE 
has been studied genetically (see “Genetic insight” in Methods). For example, 234 drugs had 
chills listed as a SE, but our database did not contain any genetic associations for chills; thus, 
this SE was excluded from analysis. This filter left 45,474 observed drug-SE pairs. Another 
confounder would be if SEs that are not causally related to the drug, but simply co-occur with 
the drug’s indication, become enriched because they are similar to the indication, which in 
turn is genetically associated to the target. We therefore also removed drug-SE pairs where 
the drug is approved for an indication with a similarity ≥0.9 to the SE. For example, ADRB1 is 
genetically associated to cardiac arrhythmia, but bisoprolol, which targets ADRB1 and is both 
indicated for cardiac arrhythmia and also has cardiac arrhythmia listed as a SE, was removed. 
These changes had a modest effect, reducing the OR to 2.0 (95% CI = 1.8-2.1, P = 2.6e-58) 
in combination (S1 Fig and Table F in S1 Table). We retained both filters for all subsequent 
analyses.

Given the strong prior evidence that human genetics can predict on-target pharmacology, 
we expected to see ORs greater than 1, and therefore to reject the null hypothesis that genetic 
evidence is not enriched among observed SEs. In this study, we were particularly interested 
in the characteristics of the SEs and genetic evidence that were enriched, and the relationship 
between the SEs and genetic evidence or approved indications to aid in using genetic evidence 
to make better target selection and safety risk decisions.

We further investigated the relationship between the SE and the traits with genetic evidence 
by examining the sensitivity of the OR to the SE-trait similarity threshold. We observed ORs at 
least slightly above 1 across all thresholds tested (minimum OR = 1.14). We wondered whether 
this might reflect that more pleiotropic targets, which have more associations, also have more 
SEs. However, there was no correlation between the count of observed drug SEs an the count 
of unique traits to which its target is genetically associated (rho = -0.01, P = 0.72, Pearson’s 
correlation). Instead, the slight enrichment observed even at low similarity thresholds might 
simply recapitulate the previously reported enrichment at the level of organ system [8] (Fig 1A 
and Table G in S1 Table), perhaps by selecting for tissues in which the drug is present and the 
target expressed. Regardless, the OR inflected at a similarity threshold of 0.75 and rose sharply 
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thereafter, reaching OR=2.0 at a threshold of similarity 0.90. Thus, genetic evidence is most 
enriched among SEs that are extremely similar to the genetically associated trait.

Varying the threshold for removal of SEs based on their similarity to approved indications 
had minimal impact (Fig 1B and Table H in S1 Table). For instance, removing all SEs with 
similarity ≥0.9 to the indication yielded 755 SEs with genetic evidence, and an OR of 2.0, while 
removing all SEs with similarity ≥0.5 to the indication yielded 592 such SEs and an OR of 1.9. 
The OR was substantially impacted only when we removed all SEs with similarity ≥0.15 to the 
indication, a threshold where the vast majority of the data were removed. At the 0.9 similarity 
threshold selected here, only 334/45,475 (0.73%) observed drug-SE pairs were removed from 
analysis due to the similar indication filter.

The sensitivity testing results support the ≥0.9 similarity thresholds used for both metrics. 
We next examined whether the source of genetic evidence had any influence on this enrich-
ment (Fig 1C and Table I in S1 Table), and found little difference, though germline oncology 
evidence had the highest levels of enrichment (S2 Fig and Tables J-K in S1 Table).

We next investigated how the enrichment of genetic evidence for SEs interacts with genetic 
evidence supporting the drug indication, termed genetic support. Because each drug may have 
many approved indications, we focused on the indications most similar to the reported SEs. 
Using our previous dataset, we found genetic support for 287/1,993 (14.4%) of drug-target-
indication tuples in our database, comprising 20.1% of all possible drug-SE pairs. The base 
rate of SEs was similar among drugs with and without genetic support: 4.9% for genetically 
supported drugs and 5.6% for unsupported drugs, suggesting that genetically supported drugs 
are no more or less likely to display SEs than other drugs. When no filter against SEs similar 
to indications is applied, drug-SE pairs with genetic evidence for the SE and with genetic evi-
dence for the indication overlap considerably more than expected by chance (OR = 2.5,  
P = 2.5e-34). Naturally, because these are by definition instances where the SE, the indication, 
and the genetic association are all highly similar to one another, many are removed by the 
similar indication filter that we used in the analyses throughout this study. Removing drug-
SEs where the SE and indication share a similarity ≥0.9 results in a slightly lower enrichment 
that is similar both for drug-indication pairs with (OR = 2.1, P = 2.3e-20), and without genetic 
support (OR = 1.9, P = 3.1e-41). Given this, we conclude that genetic support for the drug 
indication is not a major confounder for any of the SE-related analyses in this study.

Fig 1.  Predictive value of human genetic evidence for labeled drug side effects. A) Sensitivity of OR to the thresh-
old for similarity of SE to genetically studied traits. Selected similarity thresholds are annotated. The resulting number 
of drug-SE pairs with similar genetic evidence is shown on the x axis and OR is shown on the y axis. Threshold for 
removal of SEs with similar indications is fixed at 0.9. B) As in A, but here the threshold for SE-trait similarity is fixed 
at 0.9 while the similarity threshold between the SE and approved indications is varied. C) OR for several sources of 
genetic evidence contributing to this study.

https://doi.org/10.1371/journal.pgen.1011638.g001

https://doi.org/10.1371/journal.pgen.1011638.g001
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SIDER provides several SE modifiers extracted from the text, including SE frequency 
among patients as numerical estimates or descriptive terms and whether the SEs were sup-
ported by placebo or non-placebo-controlled studies. Where numerical frequencies were 
available, we found that genetic evidence enrichment increases with increasing SE frequency 
(P = 7.4e-8, binomial logit, Fig 2 and Tables L-M in S1 Table). The same was true for descrip-
tive frequency terms ranked by their reported perceived numeric values [15] (P = 0.061 for 
the linear term in a binomial logit orP = 0.0018 when analyzed using term ranks; Fig 2 and 
Tables N-P in S1 Table). Estimates of enrichment were higher for SEs backed by placebo-based 
evidence, but that difference was not statistically significant (P = 0.079, binomial logit, Fig 2 
and Tables Q-R in S1 Table).

We further explored enrichment of genetic evidence based on the number of different 
drugs for which an SE was reported, without respect to the underlying target gene. Some SEs 
are highly drug-specific, for example, bezoar is a labeled SE for only 2 drugs (lansoprazole and 
nifedipine), while other SEs are reported for a huge number of drugs, for instance, nausea and 
headache are each labeled for >500 drugs. We found that the enrichment for genetic evidence 
was strongest for SEs observed for greater than one, but fewer than ten drugs, and decreased 
as the number of drugs increased (Fig 3A and Table S in S1 Table). This poses a challenge 
for practical utility of human genetics in predicting SEs. The SEs that are most informed by 
genetic evidence are more drug-specific, and highly drug-specific SEs necessarily have a low 
base rate, resulting in relatively low predictive values (PPVs; probability of observing an SE 
given genetic evidence, Fig 3B and Table S in S1 Table).

We also considered crowdsourced severity rankings of the observed SEs [16], grouping 
these by quartile. For instance, coma and death both rank in the top quartile of severity, while 
euphoria and tooth discoloration are in the bottom quartile. We found that OR was also 
positively, though non-monotonically, associated with SE severity (P = 3.0e-23, binomial logit; 
Fig 3C and Tables T-U in S1 Table), while the base rate was slightly lower for the more severe 

Fig 2.  Impact of SE modifiers on genetic evidence enrichment. Because frequency and evidence basis are only 
defined for observed SEs, the OR indicated here is the enrichment of genetic evidence conditioned on an SE being 
observed with the indicated modifier. The assoc/obs fraction indicates in the denominator the number of drug-SE combi-
nations observed with the indicated properties and in the numerator the number of those that have genetic evidence. The 
ordering of the frequency words is based on ref. [15].

https://doi.org/10.1371/journal.pgen.1011638.g002

https://doi.org/10.1371/journal.pgen.1011638.g002
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SEs (Fig 3D and Table T in S1 Table). SE severity and specificity were themselves correlated 
(P = 2.1e-4, linear regression, log(n_drugs) ~ severity; Tables V-W in S1 Table) with more 
severe SEs tending to be observed for fewer drugs (Fig 3E). In other words, the base rate was 
lowest for the most severe quartile of SEs (6.1%, versus 10.9% for the least severe quartile of 
drugs). Drugs without a severity score assigned had the lowest base rate of all, perhaps simply 
reflecting that less commonly encountered SEs were less likely to be included in the original 
survey-based study used to rank severity.

To better understand the value of genetic evidence on SE risk, we next binned SEs by top 
level disease headings of the MeSH ontology (Fig 4 and Table X in S1 Table), revealing sub-
stantial effect size heterogeneity (P <1e-15, CMH test; Fig 4A) and in the potential utility of 
genetic evidence (Fig 4B). The endocrine category, including SEs such as diabetes mellitus and 
hypothyroidism, had the largest effect (OR = 6.5) with a low base rate (1.9%) and a PPV of 
10.5%, and were moderately severe (Fig 4C and Table X in S1 Table). In contrast, cardiovascu-
lar, including SEs such as bundle-branch block, sick sinus syndrome, and long QT syndrome, 
had a combination of both high base rate and high OR resulting in the highest PPV (27.7%), 
and tended to be relatively severe. PPV and OR were not significantly correlated across SE 
areas (ρ = 0.38, P = 0.14, Spearman). In contrast, several SE areas exhibited ORs that were not 
significantly greater than 1, and accordingly had PPVs quite close to their low base rates (Fig 
4A and 4B). Despite the overall observation that base rate is lower for more severe SEs (Fig 
3D), median severity and base rate were not correlated across SE areas (ρ = ‒0.24, P = 0.36, 
Spearman), potentially because the SEs within each area were so heterogeneous. Negative 
predictive values (NPVs) were generally high across all SE areas (range 88–99%; Table X in 
S1 Table) corresponding to the generally low base rate of any particular SE. All of the findings 
regarding SE areas were broadly consistent when we removed drugs where an approved indi-
cation fell within the same area as the SE (S3 Fig and Table X in S1 Table).

Fig 3.  Relationship between SE specificity and severity, and the predictive value of genetic evidence. A) OR for 
enrichment of genetic evidence, binned by the number of drugs for which SE was observed. The unit of analysis is 
drug-SE pairs; thus, the number of observed drug-SE pairs is necessarily higher for those SEs observed for a larger 
number of drugs, hence the tighter confidence intervals in the “100+” bin compared to the “1” bin. B) Base rate (pro-
portion of drugs reporting the SE) and positive predictive value (proportion of drugs with genetic evidence for the 
SE) binned as in A. Note that the higher base rate for those SEs observed for a larger number of drugs is tautological. 
C) OR by quartiles of SE severity. D) Base rate and positive predictive value binned as in C. E) Boxplot of specificity 
by severity bin; x axis is quintiles of severity, y axis is number of drugs for which the SE is observed. Boxes represent 
means and interquartile ranges. Whiskers represent minimum and maximum datapoints that fall within 1.5 inter-
quartile ranges of the box.

https://doi.org/10.1371/journal.pgen.1011638.g003

https://doi.org/10.1371/journal.pgen.1011638.g003
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The enrichment of genetic evidence among some target-SEs as measured by both OR and 
PPV were well above the average for any SE area (Tables Y-Z in S1 Table). Three of the five 
most significantly enriched (ranked by smallest P values) SEs were for cardiovascular traits: 
hypertension, cardiac arrhythmias, and tachycardia, all of which had ORs > 20 and PPVs 
> 50% (Table Y in S1 Table). For instance, the seven drug target genes exhibiting genetic 
evidence to tachycardia (ACHE, CACNA1C, CHRM2, HCN4, KCNH2, PDE3A, and SCN5A) 
serve as targets of a total of 40 drugs, of which 31 drugs, representing six unique targets (all 
but HCN4), have tachycardia reported as a SE, for a PPV of 78% and OR of 35.7 (P = 6.7e-25, 
Fisher exact test). Hematologic traits including anemia, leukopenia, and thrombocytopenia 
also ranked near the top of the list, with OR > 8 and PPV > 20% (Table Y in S1 Table). These 
represent traits that should receive special attention should genetic evidence be found for a 
discovery-stage target, yielding a high risk of on-target SEs.

Discussion
Despite encouraging anecdotes and the widespread use of human genetic data to attempt to 
predict safety risks, only limited systematic evidence has been reported to support the hypoth-
esis that human genetic evidence can predict drug SEs. Our study provides evidence that SEs 
are roughly twice as likely to occur for a given drug if that drug’s target has a human genetic 
association to a trait very similar to the SE. This 2.0-fold enrichment was observed even after 
removing SEs similar to the drug’s indication. The magnitude of this enrichment was highly 
sensitive to the degree of similarity between the SE and the genetically associated trait, which 
may explain why we observed a larger effect than a previously reported analysis of clinical trial 
SEs, which grouped only at the level of organ system and observed just a 1.55-fold enrichment 
after removing SEs similar to the drug’s indication.

Fig 4.  Utility of human genetic evidence for predicting SEs by affected function or organ system. A) OR binned by the SE’s top-level heading within the 
Medical Subject Headings (MeSH) ontology. Fractions indicate the number of drug-SE pairs with genetic evidence (denominator) and of those, the number 
that were observed (numerator). B) Base rate (mean proportion of drugs with the SE) and positive predictive value (proportion of drugs with genetic evi-
dence that exhibit the SE) were binned as in A. C) Median and interquartile range (IQR) of severity quantiles for SEs in each bin. Boxes represent means and 
interquartile ranges. Whiskers represent minimum and maximum datapoints that fall within 1.5 interquartile ranges of the box. D) Positive predictive value 
(PPV) vs. OR across and E) median severity vs. base rate across SE areas.

https://doi.org/10.1371/journal.pgen.1011638.g004

https://doi.org/10.1371/journal.pgen.1011638.g004
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An important limitation of our analysis is that we do not know which SEs result from 
on-target pharmacology. By capturing information from drug labels and package inserts, 
SIDER selects SEs that regulators deemed to be reasonably drug-associated, but this does not 
guarantee specificity, and coincidental SEs not caused by the drug may be included. More-
over, many SEs that are genuinely drug-related will result from off-target and not on-target 
effects. Our 2.0-fold enrichment is presumably driven solely by the fraction of SEs that result 
from on-target effects, and this effect would be larger if we were able to filter out off-target 
and unassociated SEs. We did test for SEs that are enriched among drugs sharing a target, 
and found a large enrichment of genetic evidence among these, but this test is inherently 
confounded (see Methods). An additional limitation is that our analysis does not account 
for direction of effect, either of the drug (agonist vs. antagonist) or of the genetic association. 
This is primarily due to a lack of annotations in the source databases we used. It is possible 
that stronger effects would be observed if it were possible to filter for SEs consistent with the 
drug’s mechanism of action and the directionality of gene dosage effect on the associated 
trait.

Our analysis relied on SIDER for identifying observed drug-SE pairs, because it was the 
best public database of labeled SEs available, and we were able to readily map most of the 
SIDER SEs to MeSH terms, a prerequisite for the use of our similarity matrix. Major draw-
backs are that SIDER is limited to approved drugs and has not been updated since 2015. 
Direct queries of the FDA Adverse Event Reporting System (FAERS) would provide an 
alternative approach, but would present the difficulty of selecting credible associations from 
raw SE report data. The new database OnSIDES [17], reported after the present work was 
posted, may provide a more updated extract of drug label information. For either dataset, the 
task of mapping SEs to MeSH terms remains a formidable one. Like SIDER, both FAERS and 
OnSIDES are limited to approved drugs. The requirement for drugs to exhibit a favorable 
risk/benefit balance to achieve approval presumably constrains SEs to be less frequent or less 
severe than would be the case for drugs in clinical development. It is possible that human 
genetic evidence has different predictive value for SEs observed in trials that could result in 
termination than for labeled for approved drugs. A previous study examined SEs in trials [8], 
but those data are not publicly available due to reliance on the commercial database Cortellis.

Our results demonstrate that human genetic evidence identifies on-target drug mecha-
nisms that are at increased risk for SEs among approved drugs. When viewed broadly across 
all drugs and all SEs, our analysis suggests that genetic evidence has relatively limited positive 
predictive value (PPV), because the SEs most enriched for genetic evidence are those that are 
most drug-specific, meaning they have the lowest marginal probability of occurring. Fruitful 
application of human genetic evidence to SE prediction may benefit from a focus on a subset 
of SEs that meet all of the following criterial: a) relatively more likely to begin with, b) rela-
tively well-predicted by genetics, and c) relatively severe. For example, in our study, genetic 
evidence was particularly predictive of cardiovascular SEs in general, with a PPV of nearly 
30% and relatively high reported severity, while genetic associations to specific traits including 
tachycardia, arrhythmia, and hypertension were especially predictive. These results support 
the judicious use of genetic evidence to identify specific SE risks that are worth monitoring 
and/or mitigating during drug discovery and clinical development.

Methods
  Side effects.  Side effect (SE) data were obtained from the SIDER database [13] (v4.1), 

which captures SEs from product labels and package inserts for approved drugs up through 
2015. Citeline Pharmaprojects [18] and DrugBank [19] were parsed as described [5,14,20], 
and SIDER drug names were mapped to Pharmaprojects indications using text matches 
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to Pharmaprojects drug name synonyms, or, by mapping first to DrugBank using either 
ATC codes or name matches to obtain CAS numbers, and then looking up CAS numbers 
in Pharmaprojects; the proportion of drugs mapped by various approaches is provided in 
Table B in S1 Table. Pharmaprojects matches were used to obtain human gene targets and 
MeSH terms for approved indications as described [14]. Indications that were Supplementary 
Concept Records (IDs starting with “C”) were mapped to preferred main headings (IDs 
starting with “D”). SEs were mapped to MeSH terms using UMLS MedDRA – MeSH 
mapping, exact term and substring match to UMLS and MeSH, and manual curation; the 
proportion of terms mapped by various approaches is provided in Table C in S1 Table. 
We removed drugs that were duplicates, lacked an annotated human target, an annotated 
approved indication, or were unmappable (Table D in S1 Table). Severity rankings were taken 
from a crowdsourcing study [16]. Ordering of frequency terms was based on numerical values 
determined empirically with human participants [15].

Genetic insight.  As described in Results, one of our approaches to control confounding is 
to restrict our analysis to SEs that are similar to genetically studied traits. We therefore needed 
to define which traits count as having been studied genetically, a property we have previously 
named “genetic insight” [14]. For the purposes of this filter, we considered a trait to have been 
studied genetically if that trait, or another trait with ≥0.8 similarity, was associated to at least 
1 OMIM or IntOGen gene, or was associated to at least 3 GWAS hits at different loci (proxied 
by chromosome and position rounded to the nearest megabase). For clarity, note that this 
definition was used exclusively to filter SEs to those that have genetic insight; these criteria 
are different, and far less stringent, than the criteria used to include genetic associations for 
the main similarity analysis (see the “Human genetic evidence” section above). A list of side 
effects lacking genetic insight is provided in Table AA in S1 Table.

Human genetic evidence.  We used human genetic evidence from OMIM [21], Open 
Targets Genetics [22], PICCOLO [23], Genebass [24], and IntoGen [25]; the filtering, 
aggregation, and MeSH mapping of this dataset has been described [14] but are briefly 
explained here. The OMIM Gene Map (Sep 21, 2023), which captures Mendelian disease 
associations, was restricted to solved gene-phenotype associations, removing somatic, drug 
response, and susceptibility associations, and we also removed associations for which curators 
determined that credible evidence of causality did not exist. Open Targets Genetics GWAS 
data (October 12, 2022), which aggregate published GWAS and biobank studies and map 
them to genes using a machine learning model [22], were restricted to hits with P <5e-8 and 
gene mappings with ≥50% of the total share of locus-to-gene (L2G) score assigned to any 
gene. PICCOLO data [23], which map GWAS hits to genes using eQTL colocalization without 
full summary statistics, were restricted to P <5e-8 and H4 > 0.9. Genebass [24] data (October 
19, 2023), which capture burden test results from UK Biobank exome sequencing data, were 
queried using Hail for pLoF (predicted loss-of-function) or missense|LC (missense and low 
confidence LoF) burdens via SKAT or burden tests with P <1e-5. IntOGen (May 31, 2023) 
was included to capture enrichment of somatic variants in tumor tissue. Genetic support for 
the drug’s indication (as opposed to for SEs) was taken from a previously published work [9] 
with a threshold of ≥0.8 similarity between the indication and the genetically supported trait. 
Summary statistics and examples of drug-indication pairs with genetic support are provided 
in Tables AB-AE in S1 Table.

Similarity mapping.  Similarity was computed as described [14]; the approach is 
briefly summarized as follows. MeSH terms corresponding to either drug indications 
(Pharmaprojects), SEs (SIDER), or traits (genetic associations datasets) were included in 
the matrix. To assign affected function or organ system, the MeSH terms were mapped to 
their MeSH top level headings as described [14]. A matrix of all possible pairs of resulting 
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MeSH IDs was constructed. MeSH term Lin and Resnik similarities were computed for 
each pair as described34,35; this approach accounts for both position within the ontological 
hierarchy as well as term co-occurrence. As before, similarities were set to a minimum of 
0, the two scores (Lin and Resnik) were regressed to determine a multiplier used to adjust 
Resnik scores so that both scores had a range from 0 to 1 with a regression line slope of 
1. After this transformation, the two scores were averaged to obtain a single combined 
similarity score. The similarity matrix is available in the study’s online git repository.  
In the main analyses, we counted as having genetic evidence those drug-SE pairs where 
the genetic association and SE had similarity ≥0.9 while the genetic association and drug 
indication had similarity <0.9. Examples for tachycardia are provided in Table AF in  
S1 Table.

Target enrichment.  To test whether a particular SE was enriched among drugs with a 
particular target, we performed a Fisher exact test on the contingency table of drugs with 
and without the target of interest, with and without the SE of interest reported. Target-SE 
combinations yielding an odds ratio ≥2 and Benjamini-Hochberg [26] false discovery rate 
of <0.05 (adjusted from Fisher test P values) were considered to be enriched. It is important 
to note the limitations and potential confounders inherent in this approach. For example, 
when a large number of drugs share the same target, there is more statistical power to detect 
enrichment, while when there is but a single drug for a target, it is impossible to assess 
enrichment. Moreover, drugs sharing a target may also be of the same chemical class and may 
therefore share off-target liabilities. In consideration of these limitations, we considered target 
enrichment among our candidate variables in Fig 1A but did not use this metric in ensuing 
analyses.

Models and statistics.  Analyses used custom scripts in R 4.2.0. The primary metric in this 
analysis — whether an SE is more likely to be observed when there was genetic evidence — 
was computed as an odds ratio (OR) from a Fisher exact test on the 2 x 2 contingency table of 
drugs with and without an SE, whose targets do or do not have a genetic evidence. Following 
the findings of Fig 1A and 1B, this was computed after removing drugs with an indication 
similar to the SE, and after removing SEs not studied genetically. The shaded areas for 
curves and error bars in forest plots represent the 95% confidence intervals from this Fisher 
test. Binomial logit models used the SE’s occurrence as the dependent variable, and genetic 
evidence and the variable of interest (for instance, SE severity) as independent variables, 
with interaction terms — in R, glm(observed ~ sim_assoc * severity, family=’binomial’). The 
Cochran-Mantel-Haenszel (CMH) test for heterogeneity was performed across these 2 x 2 
contingency tables for each MeSH area. For analysis of attributes that are only defined when 
the SE is observed (frequency and placebo status in Fig 2), the Fisher test was based on the 
2 x 2 contingency table of drugs that do or do not have an SE with the stated attributes (for 
instance, frequency >10% in patients), whose targets do or do not have genetic evidence. In 
such instances, binomial logit models used presence of genetic evidence as the dependent 
variable, and the variable of interest (for instance, numerical frequency) as the independent 
variable: e.g., glm(sim_assoc ~ frequency, family=’binomial’). Frequency terms were treated 
alternatively as ordinal variables, resulting in terms for linear and higher-order terms, or as 
numerical variables with the term’s rank as the numerical value, resulting in only a linear 
term. Base rate, or an SE’s drug specificity, was defined as the proportion of drug-SE pairs 
for which the SE was observed. Positive predictive value (PPV) was defined as the number of 
drug-SE pairs where the SE was observed and was supported by genetic evidence, divided by 
the total number of drug-SE pairs where the target had genetic evidence. Linear regression 
for specificity versus severity used the logarithm of the number of drugs for which an SE 
was observed, in R: lm(log(n_drugs) ~ severity). Correlations across MeSH areas were tested 
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using Spearman rank correlations. All tests were two-sided, and P values less than 0.05 were 
considered to be nominally significant.

Supporting information
S1 Fig.  Examination of possible confounders and establishment of metric used through-
out. A) Correlogram showing the odds ratios (ORs) by Fisher exact test for enrichment of 
all combinations of properties (S1 Table and Methods) evaluated in the dataset. B) OR for 
enrichment of genetic evidence vs. SE observed, with the indicated filters applied.
(TIFF)

S2 Fig.  Breakdown of evidence sources for oncology. A) Forest plot of OR by source of 
evidence (IntOGen somatic evidence vs. all sources of germline evidence) versus onco-
logical and non-oncological SEs. B) Drug specificity of oncological and non-oncological 
SEs. IntOGen overall has an OR < 1 because its somatic evidence are almost exclusively 
similar to oncological SEs, which are more drug-specific than non-oncological SEs. Thus, 
the IntoGen OR for oncology only is shown in Fig 1. Germline evidence appears to have a 
higher OR than somatic evidence for oncology. Note that the germline evidence for oncol-
ogy is driven by GWAS associations for X genes: CYP19A1 (endometrial neoplasms), ESR1 
(breast neoplasms), FGFR2 (neoplasms), INSR (polycystic ovary syndrome), and SRD5A2 
(breast neoplasms).
(TIFF)

S3 Fig.  Breakdown by side effect area. As Fig 4, but within each MeSH area, any drug with 
any indication in that area is removed.
(TIFF)

S1 Table.   Table A. Properties of drug-side effect matrix. Table B. Methods of match-
ing SIDER drug names to Pharmaprojects. Table C. Methods of matching SIDER side 
effect names to MeSH terms. Table D. Reasons SIDER drugs drop out of analysis. Table 
E. Cross-tabulation of drug-SE properties. Table F. Effects of requiring genetic insight and 
removing similar indications. Table G. Sensitivity to similarity threshold for inclusion of simi-
lar genetic associations. Table H. Sensitivity to similarity threshold for removal of similar indi-
cations. Table I. Breakdown by source of genetic evidence. Table J. Breakdown by somatic vs. 
germline and oncology vs. non-oncology. Table K. Properties of oncology vs. non-oncology 
SEs Table L. Binned analysis of numerical SE frequency. Table M. Logit model coefficients 
for numerical SE frequency. Table N. Binned analysis of SE frequency terms. Table O. Logit 
model coefficients for SE frequency terms, ordinal model. Table P. Logit model coefficients 
for SE frequency terms, linear term only. Table Q. Binned analysis of placebo status. Table R. 
Logit model coefficients for placebo status. Table S. Binned analysis of SEs by drug specificity 
(number of drugs where the SE is observed). Table T. Binned analysis of SEs by severity quar-
tile. Table U. Logit model coefficients for severity analysis. Table V. SE drug specificity versus 
severity bin. Table W. Linear model coefficients for SE severity vs. drug specificity. Table X. 
Breakdown by MeSH area. Table Y. Enrichment statistics by GWAS association MeSH term. 
Table Z. Enrichment statistics by side effect MeSH term. Table AA. Side effects lacking genetic 
insight, by number of drugs Table AB. Count of drug-indication pairs with and without 
genetic support. Table AC. Drug-indication pairs with genetic support. Table AD. Count and 
base rate of drug-SE pairs by genetic support status. Table AE. OR by genetic support status, 
with and without sim_indic filter. Table AF. Details of drugs whose targets are genetically 
associated to tachycardia.
(XLSX)
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